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Fig. 1. RadarHand uses a wrist-worn radar to sense on-skin touch-based proprioceptive hand gestures. We investigated the

proprioceptive and tactile perception nature of hand gestures at the back of the hand, gesture grouping from deep learning

models, and the real-time performance of the prototype system. The teaser summarizes the methodology and results of

three studies conducted in order to evaluate the RadarHand prototype.

We introduce RadarHand, a wrist-worn wearable with millimetre wave radar that detects on-skin touch-based proprioceptive
hand gestures. Radars are robust, private, small, penetrate materials, and require low computation costs. We irst evaluated
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the proprioceptive and tactile perception nature of the back of the hand and found that tapping on the thumb is the least
proprioceptive error of all the inger joints, followed by the index inger, middle inger, ring inger, and pinky inger in the
eyes-free and high cognitive load situation. Next, we trained deep-learning models for gesture classiication. We introduce
two types of gestures based on the locations of the back of the hand: generic gestures and discrete gestures. Discrete gestures
are gestures that start at speciic locations and end at speciic locations at the back of the hand, in contrast to generic gestures,
which can start anywhere and end anywhere on the back of the hand. Out of 27 gesture group possibilities, we achieved 92%
accuracy for a set of seven gestures and 93% accuracy for the set of eight discrete gestures. Finally, we evaluated RadarHand’s
performance in real-time under two interaction modes: Active interaction and Reactive interaction. Active interaction is
where the user initiates input to achieve the desired output, and reactive interaction is where the device initiates interaction
and requires the user to react. We obtained an accuracy of 87% and 74% for active generic and discrete gestures, respectively,
as well as 91% and 81.7% for reactive generic and discrete gestures, respectively. We discuss the implications of RadarHand for
gesture recognition and directions for future works.

CCS Concepts: · Human-centered computing→ Gestural input; Mobile devices.

Additional KeyWords and Phrases: FMCW Radar; On-skin gesture; smartwatch gesture input; hand topography; deep learning;
radar sensing; proprioception

1 INTRODUCTION

The current gold standard for smart devices is touch, and a wide variety of touch-enabled wearable devices and
wrist-worn devices are becoming more ubiquitous, such as smartwatches *, smart jackets* and even smart rings*.
These wearable and wrist-worn devices allow instantaneous command input due to their location on the wrist.
Through continuous contact with the skin, embedded sensors (like IMUs, microphones, and pulse sensors) record
users’ daily activities and monitor their health [58]. However, touch screens and touchpads in wearable devices
lack any form of haptic feedback of distinct textures and surfaces, making them challenging to operate eyes-free.

The growing requirements in more ubiquitous scenarios continuously motivate researchers to design easy-to-
use hand gestures and develop advanced sensing technologies [68]. Among the many options for command input,
hand gestures, such as unimanual gestures [12, 40, 59, 76, 86], mid-air bimanual gestures [23, 47, 55, 62, 72], and
on-skin gestures [9, 24, 76], require no tangible input devices and require minimal cognitive loads.

Onemethod to address the limitation of distinct surfaces on a device is to allow a touch on the user’s skin surface
[7]. However, previous works on turning the skin into an interactive surface generally focused on the relatively
lat areas of the body that are in proximity to hands, such as the palm or forearm [28, 35]. Alternatively, the back
of the hand is comprised of distinct topographic features and surface texture, making it an ideal environment for
interaction. The decision was made based on a human ability to perceive the locations of body parts without
looking at them, referred to as proprioception [56]. Previous works showed that utilising skin surfaces that are
rich in unique landmarks (such as joints, bumps, wrinkles, tattoos, and veins) can improve input performance
with virtual items [8, 24, 35, 66]. One such topographically distinct region is the back of the hand.

Prior researches [28, 90] often require an additional sensor on the dominant or pointing hand or relies upon a
camera-based system that is prone to occlusion, poor illumination and privacy concerns. In other studies [13],
researchers have used an on-the-shelf smartwatch to detect hand gestures through an integrated IMU (Inertial
Measurement Unit) and a microphone. However, the microphone is often susceptible to background noise and
privacy concerns, whereas IMU is vulnerable to motion noise and does not have spatial sensing capability to
detect various hand gestures for on-skin interaction.

Previous research has not extensively explored the notion of sensing gestures at the back of the hand using the
conventional gesture paradigm for smartwatches, including gestures such as tapping, horizontal swiping, vertical

* https://www.apple.com/apple-watch-series-7/
* https://atap.google.com/jacquard/
* https://ouraring.com/
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swiping, and rotation of knobs [16]. Earlier research that utilizes IMU shows promising results for tap gestures
across the back of the hand [13]. However, it would be diicult to detect other gestures aside from tapping due to
how IMU sensors use distinct vibrations to recognise gestures. In contrast, radar has shown impressive results
in sensing a wide variety of gestures, has spatial resolution, and can achieve a small footprint to it in a mobile
device [4, 29, 38].
In this paper, we present RadarHand, a wrist-worn miniature radar based on Google Soli that senses pro-

prioceptive on-skin touch input gestures, which were designed upon our study on hand topography [38]. The
topographic features of the back of the hand are distinct in terms of their position, length, texture, and angle.
Taking advantage of them is suitable for realizing unique input modalities.

Additionally, Soli has multiple attractive properties for the deployment of gestural interactions in wearable com-
puting. The radar radio frequency (RF) signal penetrates through plastic, glass, and other non-metallic materials,
preserving its functionality inside device enclosures. It will also not be afected by ambient light or acoustic noise.
Soli is also less privacy-invasive compared to image sensors since the radar does not produce distinguishable
representations of a target’s spatial structure. Finally, Soli’s sensitivity to sub-millimetre displacements, regardless
of distance, allows motion recognition in both near and far ields with the same hardware.

We have conducted three studies to evaluate our system. Prior to developing a prototype system, we evaluate
the appropriate gesture design for RadarHand based on the previously established design considerations. To
do this, we conducted an experiment to determine the performance of attaining landmarks on the back of the
hand objectively. This relects the proprioceptive and exteroceptive error in reaching the various landmarks on
the back of the hand [54]. Our objective approach aimed to provide data to inform the design of the gesture set,
as we aimed for a more rigorous approach than the current standard of using subjective scores (e.g., [9, 42]).
We performed an evaluation to assess hand proprioception and tactile perception using an extended Fitts’ Law
predictive model [21]. We also ran a post-survey to determine user perception of gesture usability, memorability,
social acceptance, and disambiguity. From this study, we obtained the least proprioceptive error landmarks using
tapping gestures at the back of the hand that are suitable for gestural interaction in eyes-free and high cognitive
load scenarios.
Leveraging the unique advantages of radar-based sensing and touch-based proprioceptive gesture insights

from study 1, we developed a novel machine-learning model and collected a dataset to classify various gesture
sets. First, we collected all the potential hand gestures data for our prototype, along with background gestures.
Second, we developed and evaluated a novel machine-learning model based on the previous work [29] on radar
gesture sensing. Finally, we introduce two types of gestures based on the locations of the back of the hand:
generic gestures and discrete gestures [7]. Discrete gestures are reined to speciic areas at the back of the hand,
whereas generic gestures are able to be performed anywhere on the back of the hand. We grouped diferent sets
of gestural groups based on generic and discrete gesture categories, which have the best accuracy and usage in
various context-driven applications.

In our inal study, we evaluated our trained machine learning model in real-time conditions and reported its
false positives and shortcomings. We evaluated our RadarHand prototype and best-performing gesture groups
from generic and discrete categories under two interaction modes: Active interaction and Reactive interaction. In
Active interaction, the user initiates interaction with a system to achieve the desired output, such as tapping a
button to access an app intentionally. In Reactive interaction, the system initiates interaction and requires the
user to react, such as replying to a notiication prompt.
Finally, we summarize all indings into design guidelines regarding the use of wrist-worn radars for gesture

detection and interaction design.
This work introduces the following contributions:

ACM Trans. Comput.-Hum. Interact.
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(1) We introduce and demonstrate the use of radar as a compact wrist-worn device to detect on-skin touch-based
proprioceptive gestures, which maintains privacy and is not afected by occlusion.

(2) We established the least proprioceptive error points on the back of the left hand for eyes-free and intuitive
gesture interactions.

(3) We group and classify the gestures using a deep learning model (accuracy of 92% for a generic 7 gesture set
and 93% for the best discrete 8 gesture set) and propose contextual applications for each gesture group.

(4) We conducted a real-time evaluation on the model to report its performance (accuracy of 87% for a generic
7 gesture set, 74% for the discrete 8 gesture set in active interaction conditions, and accuracy of 91.3%
for a generic 7 gesture set, 81.7% for the discrete 8 gesture set in reactive interaction conditions) and
shortcomings.

(5) We propose a set of design guidelines regarding the use of wrist-worn radar for wearable gesture recognition,
what can be applied, and what can be improved for further iterations.

2 RELATED WORK

2.1 Skin Surface as Input

A person’s skin can act as an alternative input surface for wearable devices [79] due to its proximity to the device.
Previous research has explored the skin as an input surface. For example, Skinput [28] is an armband that uses
bioacoustic sensing to detect inger taps on both the forearm and hand. Minput [27] uses optical trackers placed
under the wearable device allowing it to sense translational and rotational movements over diferent surfaces.
Similarly, OmniTouch [26] mounts a depth camera with a pico projector on the user’s shoulder, which projects
onto the user’s palm for interaction. SenSkin [51] uses infrared relective sensors worn on the forearm to sense
skin deformation and touch spots. Motivated by both of these works, Skin Buttons [35] combined laser projection
with infrared sensors to turn the skin surface into virtual buttons. Finally, SkinWatch [50] further expanded
on this by placing the infrared sensors under a smartwatch, turning the skin area near the watch into an input
surface.
Associating sensors with wearable electric gadgets has become popular, as smartwatches are becoming

increasingly mainstream while allowing for a myriad of new interactions for the forearm and hand. For example,
SkinTrack [90] uses a ring that emits high-frequency AC (Alternative Current) signals alongside a sensing
wristband for accurate inger touch coordinate tracking on the forearm and hand. LumiWatch [84] combines
infrared sensors with a pico projector on a watch to enable continuous inger tracking on the forearm.
From this research, it can be seen that optical-based approaches are some of the most common solutions for

detecting touch input on the skin. However, there are a few major drawbacks of optical methods; 1) there is a
possibility of privacy concerns if the tracking uses computer vision technologies, and 2) occlusion can render it
inefectual.

Besides optical solutions, acoustic solutions have also been used. For example, SonarWatch [37] uses ultrasonic
sensors mounted on a watch to detect interactions on the forearm. PUB (Point Upon Body) [39] also used
ultrasonic sensors for forearm interactions. However, ultrasonic waves often get obstructed in environments with
varying sound levels and temperatures. Lastly, other forms of sensing include tattoo-based wearables [34, 81] or
stretchable materials [48, 78] attached to the skin. In spite of the sensing robustness, these solutions require the
user to directly attach material to the skin itself, which can be uncomfortable and impedes the tactile sensation
of the skin [49].
The closest related work is TapSkin [88] and Taprint [13]. Tapskin uses an IMU and a microphone to detect

gestures at the back of the hand. However, such acoustic sensing also leads to potential privacy concerns. For
Taprint, the IMU detects tap gestures at the knuckles of the hand. An IMU senses tiny vibrations on the skin
surface as opposed to actually understanding the space, and proximity between gesture points may lead to

ACM Trans. Comput.-Hum. Interact.
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misclassiication. On the contrary, radar is primarily designed to detect proximity, allowing us to include a wider
range of gesture sets on more interaction points.

2.2 Body Landmarks for Interactions

Some previous works have used distinct hand topography instead of lat surfaces as an interaction surface. Hand
topography is body landmarks on the hand that are tactually or visually distinct from their surroundings [80]. The
key beneits of targeting body landmarks is that it allows for more accurate localization of interactive elements,
provides guidance through afordances and constraints, and allows for mapping of functionality [66]. Landmarks
are even useful for placing and recalling virtual items due to their distinctiveness [8].

Previous research found that 1) observation of the hand while performing an action, 2) tactile cues sensed by
the palm, and 3) tactile cues sensed by the pointing inger contribute to hand and palm-based interfaces [24]. This
means that the tactile sensation on the palm and pointing inger could reduce proprioceptive error, especially
when visual cues are absent. Gustafson et al. [23] used this inding to develop an imaginary phone interface
where the right index inger acts as the pointer and the left palm acts as a smartphone display in a grid-style
layout. Compared to the palm, though, the back of the hand contains more distinct skeletal landmarks like the
knuckle bone as well as diferent textures like the nail surface, which is smoother. Depending on the state of the
hand, the deformation of the skin and skeletal components are so distinct that they have proven to be useful for
sensor detection [69, 82].

A more recent work, SkinMarks, deined interactions on the body using conformal skin electronics [80]. The
interactions were performed on distinct topographical features such as skeletal landmarks like the knuckle bone
and even on accessories like rings. However, similar to the tattoo-based wearables, these methods impede the
tactual sensation since it covers the skin surface area. To overcome surfaces that lack distinct landmarks and are
usually covered with clothes, FabriClick [20] looked into integrating push buttons into the fabric. This essentially
increases the tactility of clothing-based interactions. However, our research looks into direct interactions with
the skin surface and landmarks.

2.3 Assessing Proprioception

Humans typically have much higher visual dominance over other forms of sensory feedback [10]. Outside the
typical ive senses (sight, sound, touch, smell, and taste), the "sixth sense" is often known as proprioception
[63]. Sometimes called kinaesthesia [5], it is deined as the sensation of body and movement that is typically
absent from conscious perception [71]. Proprioception relies on the mechanosensory neurons which are often
found in the muscles, tendons, and joints [18]. This allows us to still operate even without visual stimuli, with
the most common substitute being the hands. The human hand, in particular, is not only dense with cutaneous
mechanoreceptors. It is also capable of performing minute and micro motions like holding a pencil to write
with [19, 32, 45, 70]. The forearm, followed by the hand and ingertip, has an increasing level of cutaneous
mechanoreceptors [45, 49]. This partially inspired us to focus on our research on the proprioception of upper
limbs and hands, in which we utilize one hand as an input motion/pointer and another as a surface for interaction.

Research to assess proprioception in the human body started as early as 1860 [17] with a study assessing the
amount of force required by the limbs to overcome gravity while lifting weights. Wycherley et al. [83] developed
a portable device used to measure joint position sense, speciically the metacarpophalangeal joint of both the
index ingers. This device was also used by Smitt et al. [64] to measure proprioception for musicians and dancers,
particularly string players. However, the device has several limitations, namely, it relies on custom hardware
and only measures the index ingers for both hands. The proprioception of the ankle has also been studied,
since it is critical for maintaining balance [33]. Han et al. [25] and Hillier et al. [30] provided an in-depth review

ACM Trans. Comput.-Hum. Interact.
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on the various methods to assess proprioception. For RadarHand, we look into a recent method proposed by
Gunasekaran et al. [21] that used Fitts’ law and the N-back task to evaluate proprioception and tactile perception.

2.4 Radar Sensing

The irst radar systems were developed in the 1930s. It has been commonly used for detecting large moving
objects like aircraft and ships [77]. Since that time, radar sensors have shrunk in size. The recent development of
miniature radar sensors like Soli [38] has enabled radar-based, precise motion sensing to be integrated into a
broad range of everyday consumer devices. These sensors support micro gestural interaction with a hardware in a
small footprint, low power consumption, and less privacy concerns compared to other gesture sensing techniques.
Wang et al. [74] introduce a range of possible micro gestures that can be detected with Soli. Attygalle et al. [4]
also explored micro gestures using wrist-worn radar sensors when interacting with objects.

Radar can also penetrate through some materials and elicit insights of a target object. RadarCat [87] explored
the potential of applying millimetre wave radar signals to detect and classify diferent objects placed on top of the
sensor hardware. Radar functions as a non-invasive sensor that can classify the target object material from the
proile of the relected signal. There are also some uses of the radar in healthcare monitoring, medical imaging,
and vital sign measurement [60]. Other uses of radar are for respiration detection [57], sleep pattern analysis [91],
presence detection [52], tangible interaction [22] and human activity recognition [75]. Similarly, Ahuja et al. [3]
converted video signals of human activity to radar Doppler signals for the purpose of recognizing human activity.

Some consumer devices have already adopted radar sensing, such as the Google Pixel 4 smartphone with Soli *,
and the Nest Hub with presence detection *. However, the gestural interaction with these devices is currently
quite limited since those systems focus on macro gestures, such as omnidirectional swipes or a "tap" gesture in
mid-air.

We explore wrist-worn radar for on-skin touch-based proprioceptive gestures in RadarHand toward smartwatch
interaction. We have summarized the on-skin sensing wearable literature works in Table 1. To our knowledge,
we are the irst to propose radar-based gestural input for a standalone wrist-mounted wearable for smartwatch
interaction, in conjunction with a novel gesture paradigm that uses hand topography for proprioceptive and
haptic cues.

Table 1. On-Skin sensing wearable interface literature survey

Related Works Sensing Privacy Reliable and Robust Always - on Small-footprint Low- Computation Cost Spatial Sensing
Skinput [28], Sonarwatch [37], Viband [36], PUB [39] Sound/Acoustic ✓ X X ✓ ✓ X

Tapskin [88], IDial [89] Microphone X X X ✓ ✓ X
Watchsense [65], Omnitouch [26] , Imaginary Phone [23] Vision X X X ✓ X ✓

LumiWatch [84], Senskin [51], Skinwatch [50], Skin Buttons [35] Infrared X ✓ ✓ X ✓ X
Taprint [13], Tapskin [88], IDial [89] IMU ✓ ✓ ✓ ✓ ✓ X

Hambone [15] Piezoelectric ✓ ✓ ✓ ✓ ✓ X
wristlex [14] Pressure sensing ✓ ✓ ✓ X ✓ X
Skintrack [90] Electrical Wave-guide ✓ ✓ ✓ X X X
RadarHand Radar ✓ ✓ ✓ ✓ ✓ ✓

3 RADARHAND BENEFITS AND DESIGN CONSIDERATIONS

When considering gestural interaction in wearable computing contexts, we need to consider a diferent set of
technological and interaction requirements. Hayashi et al. [29] pointed out that users will interact with such
devices at the periphery or even out of their visual attention. These points clearly distinguish the beneits of the
use of radar over other conventional sensing methods:

* https://store.google.com/us/product/pixel_4
* https://atap.google.com/soli/products/#nest-hub
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1. Always on. Gesture recognition techniques should run continuously and be ready anytime whenever the
user wants to initiate the interaction. The core value of gestural interactions in wearable computers is in their
immediacy: the user can quickly interact on a small device for simple tasks with minimal cognitive efort and
without complex hand-eye coordination. Any friction, such as the need to wake up the device, will impact the
usefulness of gestural interactions in these contexts. We refer to this as active interactions, which we elaborate
further in Study 3.

2. Reliable and Robust. Gesture recognition techniques for wearable computing applications should work in
various contexts. They should be robust against environmental changes such as sensor coverings, atmospheric
temperature, and lighting conditions.
3. Private. The difusion of products with advanced sensing capabilities in personal spaces, such as our

bedrooms, living rooms, or workplaces, makes privacy a key factor for their wide adoption.
4. Potentially Small and Invisible. Gesture recognition techniques should have enough small footprint to

be embedded in various objects without compromising their form factor or aesthetic. The interaction space itself
also should be small enough so that gestures that are close together or require micro-movements can still be
utilized. Such techniques should disappear behind surfaces without requiring openings or other modiications to
the physical design of the product. It should be able to penetrate through many materials or even any material
composes of familiar objects, such as glass or cloth. We investigate this in Study 2.

5. Low-Computation Cost. The computation cost of gesture prediction should be eicient and lightweight to
be executed on wearable devices. We explore an interaction mode called reactive interactions that is better for
battery life which we elaborate further in Study 3.
To design the RadarHand gestures, which take advantage of the proprioceptive and tactile perception sense,

we considered several factors:
1. Dominant hand as a pointer, non-dominant hand as a surface.We aim to have RadarHand’s interaction

depend on a inger of the dominant hand (assigned as the right index inger in the prototype system) as a pointer
and the surface of the non-dominant hand (assigned as the left hand) as an interactive surface. In general, the
dominant hand is more accurate and intuitive when it comes to performing speciic gestures [43].
2. Landmark-driven gestures. As one of the primary goals of our gesture design is to be proprioceptive,

we focus on the gestures being based on hand topography [66]. The section of the hand with the most distinct
landmarks becomes the targeted surface of interaction.
3. Open hand state. The state of the non-dominant hand is kept open with each of the ingers stretched for

the gestures. This is to accommodate more of the aforementioned touch-based proprioceptive gestures, such as
long slides along a inger, gestures on a nail, and so on.

4. Explicit gestures. The selected gestures are explicit, which means they need to be purposefully performed,
as opposed to implicit gestures, which are potentially "normal" everyday actions such as waving, clapping, and
so on [6]. This is to reduce overall false positives and negatives.

5. Gestures derived from smartwatches. We refer to a gesture design when interacting with smartwatches
*. Smartwatches typically have three basic interactions, which are tapping, vertical slide, and horizontal slide[16].
Additionally, there is also a rotational gesture which refers to rotary input in certain smartwatches, as mentioned
by the Android Wear developer guide *.
From these considerations, we target the back of the non-dominant hand as the interactive surface due to its

many distinct landmarks, including nails, ingers, knuckles, and so on. We support four distinct gestures, which
are 1) tapping, 2) vertical slide, 3) horizontal slide, and 4) knob rotation [16, 43]. We focus on distinctive points like
nails or distal phalanges (DP), middle knuckle or proximal interphalanges (PIP), knuckles or metacarpophalangeals

* https://developer.apple.com/design/human-interface-guidelines/inputs/touchscreen-gestures
* https://developer.android.com/training/wearables/user-input/rotary-input
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(MCP), the back of the palm or metacarpals (ML), and wrist or carpus (CS) 2. Gestures such as tapping ML or
CS are removed since there is no distinct landmark to tap. Based on our gesture and the location area at the
back of the hand, we established 55 gesture possibilities. For tapping, 15 tapping gestures were selected, ranging
from tapping on the pinky MCP to the thumb DP. For slide, we looked at sliding on each of the ingers in both
directions, for a total of 10 gestures. Another 10 sliding gestures were selected on the ML for each inger. For
knob rotation, we only perform this on the MCP of each inger for both clockwise and counter-clockwise, for a
total of another 10 gestures. Lastly, a horizontal slide is performed along the CS, ML, MCP, PIP, and DP for both
directions for a total of 10 gestures (15 + 10 + 10 + 10 + 10 = 55).

Distal Phalanges

Proximal Interphalanges

Metacarpophalangeal

Metacarpals

Carpus

MCP

PIP

DP

ML

CS

Slide
(left/right)

Swipe
(up/down)

Tap

Knob
(clockwise/
 anti-clockwise)

a b

Fig. 2. (a) The gestural interaction area around the back of the hand, (b) RadarHand gestures

4 STUDY 1: PROPRIOCEPTIVE GESTURES

Before proceeding with the development of the RadarHand prototype, it is crucial to evaluate the appropriate
design of gestures based on established design considerations. In this context, identifying the landmarks on
the back of the hand with the least proprioceptive error becomes essential in order to design efective gestures
speciically for these landmarks. Proprioception plays a vital role in perceiving the position and movement of our
body parts, including our ingers. Exteroceptors aid in verifying the accuracy of touch locations when tapping on
the back of the hand. Therefore, we objectively assess the performance of reaching diferent landmarks on the
back of the hand, as this directly relects the associated proprioceptive error [54].

In order to adopt a more rigorous approach compared to the subjective scoring methods employed in previous
related studies (e.g., [9, 42]), we conducted experiments to objectively measure the performance of reaching
landmarks on the back of the hand. This objective approach aims to provide empirical data that can inform
the design of the gesture set. By employing this approach, we aim to obtain precise and reliable insights into
identifying the landmarks on the back of the hand that exhibit the least proprioceptive error, making them most
suitable for gestural interactions. These identiied landmarks, with the least proprioceptive error, will serve as
the optimal points on which users can perform gestures under conditions of high cognitive load and eyes-free
scenarios. This will enable enhanced smartwatch interaction for everyday activities.

ACM Trans. Comput.-Hum. Interact.
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Fig. 3. System design for the Study 1 setup, to understand the proprioceptive nature of the hand gestures: 1) the OptiTrack

motion capture system observes the interaction area, 2) gesture prompt, and 3) N-back task visuals are displayed on a

monitor, 4) a divider that prevents study participant from looking at their hands directly

4.1 Apparatus

Figure 3 shows the study setup. Two computer systems were running simultaneously to conduct the session.
The irst system was for precise hand tracking. We set up a motion tracking system with four OptiTrack Flex 13
* cameras to track retrorelectors that are applied to the index ingertip of the right hand. The motion capture
cameras were placed around the main table and were connected to a Windows desktop computer, which ran
OptiTrack Motive * software for real-time data collection. The second system was for an N-back task and gesture
prompting. A 15-inch MacBook Pro laptop computer with a 65-inch generic colour monitor was used to display
both the N-back task and gesture prompt with an illustration of the left hand annotated with a red dot. The red dot
on the hand illustration tells the participant the exact position to perform a tap gesture. Since both systems were
linked through a local network connection, live motion tracking data of the right index ingertip was streamed
from the irst system to the second in real-time. The second system ran C++-based custom software built with
openFrameworks *, which prompted gestures with graphics, ran the N-back task, and recorded live motion data
of the right index ingertip and the N-back task results.

We also introduced physical constraints to the setup to keep it the same across all the participants 3. To remove
any chance of visual aid, we placed a large piece of cardboard attached to the edge of the table as a divider to
obstruct the participants’ vision of their own hands.

For reliable hand motion tracking, we used 3D-printed hand placeholders for the left hand. The placeholders
were attached to a piece of paper with a hand outline printed on it, which was attached to the table. For the
right hand, we sculpted a foam block that was attached to the table so that the participant could place their hand
in it with the index inger pointed outward. These solutions also ensured that the hands were returned to the
original position after each task without the need for looking. All apparatus was sanitized before and after each
participant.

* https://optitrack.com/cameras/lex-13/
* https://optitrack.com/software/motive/
* https://openframeworks.cc/
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4.2 Study Design

The design of our study is based on the methodology proposed by Gunasekaran et al. [21] that adapted Fitts’ law
and N-back task for assessment of proprioception. In the irst stage of the study, we focused on inding the best
locations that have the least proprioceptive error to perform hand topology-based gestures while balancing a
high cognitive load. This was done by getting the participants to perform tapping gestures with their right index
inger on diferent areas of the back of their left hand and then analysing the precision of the gesture performance
on the target spot using Fitts’ Law as the means of evaluation.

4.3 Participants

A total of 26 participants (13 females, mean age (years): 25, SD: 3.2) were recruited for this study. Almost a quarter
(24%) of the participants used a laptop on a daily basis, and 27% used smartwatches. All the participants were
right-hand dominant with no prior accidents that could afect motor skills in the hand.

4.4 Procedure

The participant irst read and signed the consent form, followed by the information sheet about the N-back task
while the experimenter explained the tasks. The width of each inger on their left hand was measured with a
vernier calliper. Then ifteen spherical retrorelective markers of 10 mm diameter were attached to the MCP,
PIP, and DP of each inger on their left hand. One spherical marker was attached to the index DP of their right
hand. The location of the markers was then captured using the OptiTrack system, where the system retrieved
the three-dimensional position of the points of interest. The markers were removed from the left hand after the
positions of the markers had been captured so that participants could actually touch the MCP, PIP, and DP points
on their ingers.
Participants initially begin a short practice round to familiarize themselves with the system before moving

on to the actual study. As shown in Figure 3, the N-back task was running on the bottom half of the main
screen. For each section of N-back task, an alphabetical character was presented for 500 milliseconds. Then, the
participant had 4500 milliseconds to answer verbally if that character was the same as the one or two characters
shown before. On the top half of the screen, a gesture prompt with the left-hand silhouette and a red dot, shown
somewhere on one of the MCPs, PIPs, and DPs on the left hand, was displayed. The participant would tap the
corresponding position of the left band with their right index ingertip, then return the right hand back to the
resting position indicated with the foam hand rest. They were asked to answer the N-back test and perform the
tapping gesture simultaneously. They would tap each dot position three times during the study, and there were
45 tapping gestures performed overall (15 positions x 3 iterations). The entire gesture performance section took
ive minutes or less time. Each inger movement tracked with the OptiTrack system was recorded, along with the
response and answering time of the N-back test.
Later, participants are required to complete a questionnaire that examines four diferent gestures (tapping,

vertical slide, horizontal slide, and knob rotation) on the free hand state. Participants were shown short videos
of the gestures and encouraged to try them out. The questions asked were around the usability, memorability,
and social acceptance for each of the gestures [43]. Participants were also asked to rank their preferred inger
and gestural design area. The whole experiment took around an hour to complete. At the end, participants were
compensated with a $10 shopping voucher.

4.5 Computing the Fits’ formula

The movement data consisted of the position coordinate, timestamp, velocity, and the marker’s angular velocity.
The N-back response data consisted of the participant’s answer and the timestamp. We used the Fitts’ law
extension of Murata and Iwase [46] and Cha and Myung [11] to compute the Fitts’ Index of Diiculty (ID).

ACM Trans. Comput.-Hum. Interact.
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To achieve this, we made a Python script to compute the distance parameter (A), width parameter (W), and
movement time (MT). Based on the measured inger width (W), we created a bounding box around the target
point, shown in Figure 4 on the right. At every sampled data frame, we measured the traversal distance between
the right index and the center of the bounding box. From there, we could calculate the minimum distance (A) for
when the right index entered the bounding box before returning to the origin. MT was the time taken during the
right-index trajectory movement toward the target.
According to the revised Fitts’ law of Murata and Iwase [46], the inclination angle (�1) is formulated using

trigonometric calculations of the minimum distance point (� ), origin point (�), and ground plane (�) as these
points form a triangle, as shown in Figure 4. Using these three points, we calculated the inclination angle using
the formula below:

�1 = arcsin
� − �

� − �
(1)

For the revised Fitts’ law of Cha and Myung [11], we used a trigonometric evaluation of three points to
compute the azimuth angle (�2) value: the origin point (�), the ground plane (�), and the displacement of the
minimum distance point of the original plane (� ′). These points formed a triangle, shown in Figure 4 from which
we calculated the azimuth angle using the formula below:

�2 = arcsin
� − � ′

� − � ′
(2)

4.6 Results

4.6.1 Analysis of Fits’ ID vs MT. Figure 5 (left and middle) shows the comparison between the two Fitts’ IDs of
Murata and Iwase [46] and Cha and Myung [11]. It can be seen that it has a stronger linear relationship compared
to Murata and Iwase’s Fitts’ ID when Cha and Myung’s ID linear regression value is closer to 1, though both did
not perform very well with our data. The Fitts’ IDs were mainly afected by distance and target size conditions.
The efect of distance shows MT gradually increases as the target ingers move from the thumb to the pinky. The
variance in target size due to the diferent inger widths of the participants was also a reason for the non-linearity
in Figure 5 between MT versus ID. The data was modeled using the revised Fitts’ ID formula for the pointing
tasks in 3D space [46]. As a result, we got ID levels for each of the 15 diferent conditions based on the equation.
The model regression coeicients were �2

= 0.0604 for Murata and Iwase’s method and �2
= 0.109 for Cha and

Myung’s method (computed based on the Fitts’ formula detailed in Section 4.5). From the ID calculated using
Murata and Iwase extended Fitts’ law, we created a heat map that depicts the distribution of Fitts’ ID from thumb
to pinky, as shown in Figure 1 (right).
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4.6.2 Analysis of Movement Time vs. Answer Time. Since the participants were required to perform the tapping
and N-Back tasks simultaneously, there could be a delay in one task. This will allow us to understand user
behavior as well as performance accuracy while performing a task under high cognitive load. Movement time
(MT) is the time taken by participants to move from the origin to the target. Answer Time (AT) is the time
taken by the participant to give an answer for the N-Back task. The rightmost plot in Figure 5 depicts the box
plot comparing MT and AT with the y-axis represented in milliseconds. There is a general trend among all the
participants that they try irst to touch the target and then give an answer to the N-Back task. Running a paired
t-Test gives � (6.07) = 478, � < 0.001, which shows there is signiicance between MT (M = 2128.4, SD = 452.4) and
AT (M = 2360.5, SD = 380.8).

4.6.3 uestionnaire Results. For the post-experiment questionnaire results, the average scores for all the hand
gestures are shown in Figure 6. We irst tested our data for normality using the Shapiro-Wilk test and found its
distribution is not being normal. As our data is non-parametric, we ran the Friedman test and found statistical
signiicance across usability (� 2 (3) = 57.758, � < 0.001), memorability (� 2 (3) = 36.482, � < 0.001), social
acceptance (� 2 (3) = 34.119, � < 0.001), and disambiguity (� 2 (3) = 28.702, � < 0.001). Looking at usability irst,
we conducted a Nemenyi post-hoc test and found that the usability interaction on tapping gesture and knob
rotation, tapping gesture, and vertical slide (� < 0.01) lead to signiicance. Horizontal slide and knob rotation
(� < 0.01) also lead to signiicance under usability. For memorability, we found that the tapping gesture and
knob rotation, tapping gesture, and vertical slide lead to signiicance (� < 0.001). Next, under social acceptance,
the tapping gesture and knob rotation (� < 0.001) lead to signiicance. Finally, knob rotation and tapping gave
signiicance under disambiguity (� < 0.001). All other combinations lead to no non-signiicant results (p > 0.05).
The user preference ranking of ingers, hand position, and gestures are summarized in Table 3.

Table 2. Ranking of gestures based on user’s preference.

Gestures Finger Hand Position
Tapping Thumb > Index > Middle > Ring > Pinky MCP > DP > PIP

Knob Rotation Thumb > Index > Middle > Ring > Pinky -NA-
Vertical Slide Index > Thumb > Middle > Ring > Pinky MCP-DP > CS-MCP
Horizontal Side -NA- CS > ML > MCP > PIP > DP
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Fig. 6. The results from the survey by gesture category, grouped by the type of gesture performed.

4.7 Discussion

Our indings indicate that both Fitts’ models exhibit a non-linear relationship. When the index of diiculty (ID)
is high, reaching the tap point becomes more challenging, resulting in decreased gesture accuracy. In terms
of the ingers of the left hand, the ID gradually increases from the thumb to the pinky, which aligns with the
sensory somatotopic mapping of the human hand. This observation may potentially explain the variation in the
Fitts’ ID between ingers. Notably, the index and thumb ingers have shown a larger activation volume in the
somatosensory cortex during an fMRI study [44], with the index inger exhibiting the most prominent activation
cluster.

Regarding gesture locations on the ingers, excluding the thumb, the ID is lowest at the metacarpophalangeal
(MCP) joint, followed by the proximal interphalangeal (PIP) joint, and inally, the distal phalangeal (DP) joint.
Although the ingertip has the highest number of neuron endings, it exhibits a higher ID compared to the other
joints. This can be explained by two factors. Firstly, according to Long et al. [41], individuals perceive their
bodies, especially their ingers, to be smaller when there are no visual cues. Secondly, the palms have a higher
concentration of muscle mass compared to the ingers, resulting in a greater number of mechanoreceptors.

Our study involved participants concurrently performing two tasks: touching the target point and answering
the N-back task, without relying on visual cues. From the analysis of the average touch (AT) time for the N-back
task and the movement time (MT), we observed a trend where participants prioritized touching the target before
engaging with the N-back task. This observation can be attributed to the fact that proprioceptive-based tasks
generally impose lower mental load compared to the N-back task [2]. Consequently, this suggests that users may
still be able to accurately perform tapping gestures without visual aid using RadarHand in real-world scenarios
where they can briely focus on interacting with the wearable, such as when driving or carrying objects that
obstruct their vision.

The survey results, depicted in Figure 6, and the analysis of the questionnaire revealed signiicant diferences
in perception among the diferent gestures. The tapping gesture was perceived as signiicantly more usable than
knob rotation and vertical slide gestures. Furthermore, the horizontal slide gesture received signiicantly higher
usability ratings compared to knob rotation. In terms of memorability, participants perceived the tapping gesture
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as more memorable overall when compared to the knob rotation and vertical slide gestures. Additionally, the
tapping gesture received a signiicantly higher score in terms of social acceptance compared to the knob rotation
gesture. Finally, participants indicated that the knob rotation gesture was signiicantly more ambiguous than the
tapping gesture.
Analysis of our results, as depicted in Figure 5, aligns with the perceived inger and joint ranking. Conse-

quently, based on the survey and Fitts’ study, we have determined that the thumb, index, and middle ingers are
the least prone to proprioceptive errors and are therefore preferred for gestural interactions. Speciically, the
metacarpophalangeal (MCP) and distal phalangeal (DP) joints are identiied as the least prone to proprioceptive
errors and are preferred locations for performing gestures.

In our current empirical study design, participants were instructed to tap on the back of the hand under condi-
tions of high cognitive load and without visual cues. This tap gesture process incorporates both proprioceptive
and exteroceptive elements, necessitating consideration of the diferent components of feedback during the
interaction [7]. Proprioception refers to the internal sense of body position and movement, enabling individuals
to perceive the location and orientation of their body parts [67, 92]. In the context of gestural interactions,
proprioceptive feedback plays a crucial role in guiding users to accurately reach the desired gesture locations on
the back of the hand. On the other hand, exteroception involves external cues and sensory information derived
from the environment [92]. In our study, exteroceptive feedback aids in verifying the accuracy of touch locations
on the back of the hand. By integrating both proprioceptive and exteroceptive elements, the RadarHand gestures
can provide users with comprehensive feedback, thereby enhancing the overall usability and efectiveness of
gestural interactions, particularly in the landmarks with the least proprioceptive error. Hence, RadarHand ges-
tures performed around these landmarks exhibit high accuracy during everyday smartwatch interactions under
conditions of high cognitive load and without visual cues.

5 STUDY 2: DEEP LEARNING AND GESTURE GROUPING

We established the best gestures based on proprioception and survey results from Study 1. In this section, we
aim to design and train a deep neural network model to recognize and classify these touch-based proprioceptive
gestures accurately. As we plan to establish a design guideline for RadarHand, we will collect an adequate amount
of gesture performance data and train diferent models for a wide variety of gesture groupings and combinations,
as well as suggest which gesture group is contextually more suited to a proposed RadarHand application.

5.1 Apparatus

Fig. 7. (a) The Soli sensor hardware with antenna placement introduction (highlighted ones are the antennas being used

in prototype system), (b) Soli signal transmission and reception, (c) the range-Doppler data collected from a single signal

receiver of Soli (tap gesture, center 36 frames)
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5.1.1 Hardware. The entire sensing paradigm for RadarHand depends on the Soli sensor that was mounted on
the wrist of the user, and the signal processing pipeline runs as a part of application software. For this trial, the
sensor was tethered to a laptop computer for power and data transmission. The sensor circuit board was mounted
on a wrist using a custom 3D printed mount with a bangle made of a double-sided Velcro strip so that it was
easily wearable. The mount had a channel that allowed a material sample of two millimetres thick to be mounted
in front of the sensor. This was to simulate the use of diferent kinds of hardware casing materials or the sensor
surface obscured by clothing. The device is shown in Figure 7. The Soli sensor we deployed was a custom design
based on Inineon’s BGT60TR24B chip [60].
Soli is a miniature FMCW (Frequency-Modulated Continuous Wave) radar system. Generally, FMCW radar

emits a sinusoidal electromagnetic wave and reads the relected signal after bouncing of an object (Figure 7).
The electromagnetic wave changes its oscillation frequency within a speciic frequency band available in the
system, continuously between lower to higher over time. That allows Soli to measure the distance and velocity of
a target object, hence it is possible to extract spatiotemporal information of it.
The data we obtained from the sensor was a time-series complex range-Doppler (CRD) map [29]. The range-

Doppler map is a two-dimensional representation of relected signals captured with a receiver. The range
dimension and Doppler dimension are responsible for the distance to an object and the velocity of an object from
the sensor surface, respectively. In other words, the range-Doppler map exhibits spatial energy intensity. The
CRD map is data represented in complex numbers, which allows us to reconstruct an absolute range-Doppler
map that illustrates an amount of relected energy in the sensing area, and a map of the arrival angle of relected
signals, used to retrieve the angle of the incoming signal to understand angular motion of an object by combining
multiple channel inputs. In this paper, we call these two maps the magnitude map and the phase map from the
CRD map, respectively.

The sensor device we used equips two signal transmitter antennas and four signal receiver antennas. Since the
receiver antennas are arranged to form a square, we can take two pairs of receivers to form an L shape so that we
can extract the angular motion of the objects in Soli’s sensing ield about the azimuth and elevation direction
(Figure 7). Thus, we can elicit three key characteristics to read micro gestures with CRD maps: distance, velocity,
and angular motion of a inger on the back of another hand [29].
We used the C++-based Soli software development kit (SDK), which has digital signal processing features to

elicit adequate features from the raw sensor signal to talk with the sensor and extract CRD map data. As before,
all apparatus was sanitized before and after each participant’s session.

5.1.2 Sotware. We employed a 15-inch MacBook Pro laptop (Apple Inc.) for data collection with a Soli sensor
device tethered by a USB cable. Software to talk to the sensor for data acquisition, processing, and recording was
developed with the openFrameworks software library. In the RadarHand prototype, the sensor was conigured to
sample signals from three signal receivers at 1000Hz. Then, the signal captured was down-sampled with a sliding
window of 32 consecutive sample frames. This operation technically realizes low-pass iltering on the sample
frames to eliminate noises and avoid confusion in sample frames apart from the hand performing a gesture. After
the downsampling, the software streams the data at 32 frames per second. From each sample, we extracted a CRD
map composed of three magnitude and phase maps from the receivers. Figure 7 shows an example of consecutive
CRD maps captured with Soli while one of the authors was performing a gesture.

5.2 Procedure

The study participant was seated in a shared space in a laboratory building and given an information sheet and
a consent form to read and sign. A Soli sensor was put on their left wrist, and the experimenter explained the
tasks. Once the data collection started, the participant was shown the gesture to perform with a color image of
the left hand with gesture instructions shown in simple graphics on the laptop screen. They had 5 seconds to
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conirm the gesture to perform from the image. Then they were prompted to start performing the gesture ten
times. A beep sound was played at the start of each gesture iteration to notify the participant when to perform
the gesture, along with a progress bar showing each gesture iteration on the laptop screen. Participants had 2
seconds to complete each gesture.
In total, there were 55 gestures plus 1 background noise class consisting of all background data as shown in

igure ??. A combined class of background data is intended to reduce false positives in the prediction and increase
the robustness of the model in real-time. The background data was selected based on everyday activities such as
clapping, waving your hands, or typing on a keyboard. The complete gesture set was repeated four times with
diferent sensor covering situations with diferent materials: no material, glass, plastic, and fabric. Each covering
material was placed in front of the sensor. Performing the entire gesture set took under half an hour, and the
whole session took two hours. The gestures the participant was asked to perform were tapping, vertical slide
from the CS to MCP and MCP to DP, horizontal slide from one end of the back of the left hand to another end,
and knob rotation.

5.3 Data Collection

We recruited 46 participants (24 females, mean age: 24 years, SD: 2.53). All the participants were right-handed,
meaning they wore a Soli on their left forearm and used their right hand for gesture trials. Prior to the main
session, we explained to the participants the details of the study and gave them 5 minutes to try out each gesture
and software used for collecting data. The participant then watched the laptop display and performed the gesture
displayed on the screen. Figure 9 shows the study setup from a participant’s point of view.

To increase the robustness of the model, we prepared three diferent material samples to add some variation to
the sensor output (glass panel, cloth, and plastic panel, all of them of two-millimetre thickness). These materials
were installed to the channel of the sensor mount to simulate a sensor under diferent conditions.

In this study, we had four diferent material conditions along with no material setup to obscure the sensor
surface, so we collected 2,440 trials (10 trials * 55 + 6 (55 gestures with 6 variations of background noise) * 4
(repeat)) from each participant, and each data collection process per participant took 2 hours. At the end of the
study, we compensated participants with a $40 shopping voucher. Overall, we collected a total of 112,240 samples.

We randomly split each participant’s data into training, validation, and test sets. A total of 36 participants’ data
went to training (1000 samples per gesture), 6 participants’ data went to Validation (200 samples per gesture), and
4 participants’ data went to test data (120 samples per gesture). We made sure that gestures from any participant
were not split into the training, validation, and testing sets.

5.4 Algorithm

For gesture recognition, we used the Deep RadarNet architecture, which is a modiied version of the RadarNet
software [29]. As Soli samples at 1,000Hz, we used a sliding window of 32 frames to generate a range-Doppler
map to efectively down-sample it to 32 frames per second. This resulted in 64 frames of data over two seconds
of recording, which we used as the inal time window per gesture. We speciically ine-tuned the model to
perform better for close-range gestures like what we proposed in Study 1. The model consists of 1) radar signal
preprocessing, 2) Deep RadarNet, and 3) gesture debouncer.

5.4.1 Data Pre-processing. After we split the data into three sets of trials, we reined the timings of the labelled
segments attached in the positive recordings. During the gesture recordings, it was observed that there was
a timing diference between when gesture prompts were given to participants and when those participants
actually performed the gestures. To design a deep learning model that is real-time gesture inference ready, we fed
continuous data of each gesture (a recording of consecutive 10 gesture trials) into our pre-processing algorithm.
The pre-processing algorithm calculated a time-series plot of maximum energy value from the magnitude
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Fig. 8. RadarHand gesture samples

Fig. 9. The data collection setup for Study 2. A participant wears the Soli sensor device facing towards their let hand on

their let wrist and performs gestures that is prompted on the laptop computer screen.

component in the range-Doppler map for each frame in the continuous data recording, and found out the peaks
using the peak detection algorithm and extracted 32 frames before the peak and 31 frames after the peak, as
shown in igure 10. Once the data was extracted, it was saved in the NumPy * data format.

We then generated negative samples from background recordings by extracting 64 frames and splitting them
into the training, development, and test sets. With the Soli SDK we extracted CRD maps for each receiver channel.
Each CRD map was composed of 2D data that has 32 range bins and 32 Doppler bins. All of the values were stored
as a complex loating-point value and can be decomposed into 1) a magnitude part, which holds information on
energy distribution in the sensing area, and 2) a phase part, which contains information on the angular velocity
of the object in the sensing area. With the coniguration we adopted in this study, we captured CRD maps from

* https://numpy.org/
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Fig. 10. 10 continuous gesture samples are split into each gesture trial based on a peak detection algorithm. The graph above

depicts the energy of the signal of each gesture type.

three receivers in the sensor, and thus we got three CRD maps per frame (32 * 32-pixel map for both magnitude
and phasic parts for three channels).

Deep RadarNet uses complex range-Doppler maps as input, similar to the RadarNet. The Deep RadarNet used
the irst 16 range bins as an input to detect gestures in a 40 cm radius from the sensor surface. Each bin size can
be calculated by the equation:

����� (�) = � (������ � ���ℎ�, 3.0 ∗ 108�/�)/2 ∗ �� (����) (3)

In this study, the radar signal bandwidth was 63��� − 57��� = 6���, and each range bin size could be
calculated as 2.5 cm from the equation. We limited the interaction space to 40 cm from the sensor, so we cropped
the range bins at the 16th bin, corresponding to 40 cm distance to have users’ index ingers always within the
interaction space on CRD maps when their hand performed the gestures. The input was reshaped into a tensor
with sizes (16, 32, 6) and passed to the frame model of the Deep RadarNet.

5.4.2 Deep RadarNet. Deep RadarNet takes a CRD map consisting of complex values from three channels as
input. In these data representations, the relative phases among the channels correspond to the angle of scattering
surfaces around a Soli sensor. The absolute phases of the complex values are afected by many factors, including
surface positions under the range bin resolutions, phase noises, and errors in sampling timings, and can be
regarded as uniformly distributed random values. While the absolute phases can distribute uniformly in a large
dataset, there could be biases in a smaller dataset. To address the potential biases, we augmented the data by
rotating the complex values with random phase values chosen from a uniform distribution between −� and � .
Furthermore, the magnitude of complex values are afected by many factors to some extent, including antenna
properties diferences among multiple Soli sensors, signal relectivity of scattering surfaces, and orientations of
the surfaces. Thus, we augmented the data by scaling the magnitude with a scaling factor chosen from a normal
distribution. These data augmentations can be written as:

��� (�, �, �) = � ∗��� (�, �, �) (cos� + � sin� ) (4)

where: CRD is a complex range-Doppler map; r, d, and c are a range bin index, a Doppler bin index, and
a channel index in the complex range-Doppler map, respectively; s is a scaling factor chosen from a normal
distribution with a mean of 1; � is a random rotation phase chosen from a uniform distribution between −� and
� . While we used the proposed data augmentation technique from the Deep RadarNet research only for our
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Fig. 11. Deep RadarNet consists of a temporal model and a frame model. The frame model summarizes one frame of complex

range-Doppler maps into 36 values. The temporal model combines summaries from 64 frames, then applies a dense layer

that outputs gesture class probabilities with a sotmax layer.

gesture detection system, we believe that this technique can be applied to other deep neural network systems
using radar signals as inputs.

The Deep RadarNet consists of a frame model and a temporal model as shown in Figure 11. At the beginning of
the frame model, an average pooling is applied to the input tensor to make the tensor size smaller and to reduce
the computational cost. After this layer, a series of separable 2D residual blocks and max pooling are applied.
We opted to use separable convolution layers instead of standard convolution layers in the residual blocks to
optimize computations at the cost of minor degradation in the gesture recognition performance. Finally, one
separable convolution layer is applied to compress each channel into one value, shrinking the tensor to 36 values
as an output from the frame model.

The temporal model takes the last 64 frames of the frame model outputs as input. The 64 frames of the frame
model outputs, except the latest one, were taken from the cache. The temporal model concatenates and processes
them with a series of one-dimensional residual blocks and one-dimensional max pooling layers. At the end
of the temporal model, a dense layer outputs the classes’ variable values, and a softmax layer is applied to
compute the probabilities for the variable classes. We found that using an LSTM layer instead of the series of
the one-dimensional residual blocks and the one-dimensional max pooling gave performance improvements.
However, we opted to use the current structure to reduce computational cost.

5.4.3 Gesture Debouncer. A window size of 64 frames was used for the segmented classiication task. However,
the algorithm needed to correctly classify the gestures from an unsegmented data stream. This is signiicantly
more challenging since we do not know where the gesture is situated within the time series data. To overcome
this, we added the following heuristics: 1) the chances of a gesture to be performed should be higher than an
experimentally determined threshold of 0.3 within the last three consecutive frames, and 2) after a gesture is
detected, the chance of any subsequent gesture to be detected becomes lower than 0.3 before gesture detection is
initiated again. The thresholds were determined experimentally in order to achieve the desired balance between
recall and false positives.
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5.5 Evaluation

All training was done for 1000 steps with a batch size of 32. Each training took 5 hours with an NVIDIA V-100
with 32 GB graphic card memory. We evaluated the performance of our architecture in two tasks. The irst is a
segmented classiication task. In this task, recordings in the test set were segmented into multiple samples using
the same algorithm we used to generate the training samples. As a result, the samples were easier to classify. For
instance, complete gesture motions are always detected at similar positions in the segments. The second task is
an unsegmented recognition task, where a model combined with a gesture debouncer had to detect gestures with
continuous time-series data without knowing the positions and the numbers of gestures in the data. This made
the unsegmented recognition task more challenging. However, algorithms have to process continuous data in
practice; evaluations with this task gave us more ecologically valid performance estimates.

According to Study 1 results, the hand ingers are ranked as the thumb, index inger, middle inger, ring inger,
and pinky inger based on their least proprioceptive error on tapping abilities. Additionally, we found the ranking
of gestures from participants as listed in table 3 from our survey. Combining the results of Study 1 and the survey,
We examined our Deep RadarNet algorithm and proposed 29 gesture groups. We reported each gesture group’s
test accuracy and its contextual applications.

5.5.1 Computational Eficiency. We evaluated the computational eiciency of the Deep RadarNet using its model
size and inference time. The model size afects how much memory is required to run the model. Inference time
afects how much computational power a processor needs to run the model, as well as the power consumption
and thermal efects of the computation.

We compared with RadarNet [29] and modiied its input based on RadarHand’s gestural input size. We evaluated
inference time using the TensorFlow Lite [1] and its performance proiler distributed with TensorFlow v.2.4.1. We
converted all models into TFLite models and measured the inference time on Pixel 4 XL with the performance
proiler by taking the average inference times over 1000 inference trials.

Table 3. Comparison of computational eficiency in terms of model sizes and inference times. Deep RadarNet was as

computationally eficient as the RadarNet.

Model Accuracy[%] Model Size[MB] Inference Time[ms]
RadarNet[29] 87.5 1.1 0.57
Deep RadarNet 93.7 1. 9 0.45

As shown in Table 3, Deep RadarNet has a 3.5 times larger model size and 1.25 times longer inference time
than RadarNet. This is because RadarNet has a smaller interaction area compared to Deep RadarNet. Compared
with the modiied RadarNet with the same interaction area as Deep RadarNet, the model size and the inference
time were comparable, indicating that their computational eiciencies are similar. Furthermore, Deep RadarNet
achieved higher classiication accuracy than RadarNet when it comes to detecting gestures set of 8. In addition,
RadarNet[29] have proved to be eicient compared to previous works baseline models [31, 74]. These comparisons
demonstrate that Deep RadarNet is as computationally eicient as RadarNet and can be executed on mobile
devices with limited computing resources.

5.5.2 Segmented Classification Task. We generated a segmented test set for each gesture trial, along with the
training samples from the training set that were generated with a sample generation algorithm. Each sample
had 64 frames of CRD maps from three receivers and was assigned one of the classes as a ground truth label.
Then we evaluated the classiication result of all gesture trials in the segmented test set using Deep RadarNet.
The labels with the highest probability among the gesture classes were used as predictions without applying
the gesture debouncer. This was because the test recordings were pre-segmented into samples in the segmented
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Fig. 12. Validation accuracy for gesture input with diferent frame sizes.

classiication task. Figure 13 shows the results, which will be explained in the Gesture Grouping and Accuracy
Results section, demonstrating that Deep RadarNet provided robust classiication performance in the segmented
classiication task.

5.5.3 Trial on applying diferent frame size. As each gesture was observed at any time in a two-second time
window, with 64 frames worth of data, we tried to ind the best-performing frame size by trying a few diferent
frame size conditions. To examine that, we took 8 unique gestures based on the Study 1 results, which gave us
the highest accuracy from the Deep RadarNet inference trial. Then we fed this as input to the Deep RadarNet
algorithm. One of the strong motivations of this trial is that, as we mentioned in the previous section, we observed
some gestures starting timing drift due to each participant’s response to the beep sound and gesture speed
variability. Hence, it is worthwhile to know the best-performing frame size as an input to the model, which is
directly proportional to the parameter size and computational power required for inference. We compared all the
conditions we examined using the results of the development set. Figure 12 shows the graph of the validation
accuracies for diferent input frame sizes. We also tried a sliding window of 30 consecutive frames across 64
frames of data under the same labelling as input to the deep learning model. Even though a window size of 56
yielded the highest accuracy, we opted for 64 instead, which has a lower accuracy by 1, yet can better account for
diferent gesture timing across participants.

5.6 Gesture Grouping and Accuracy Results

In this section, we design groupings for our gesture combination and report their accuracy. We group the gestures
for 2 reasons. Firstly, it is unrealistic and redundant for us to report inference accuracy for every possible gesture
combination. Secondly, we wish to design gesture sets that cater to speciic contexts of applications. To group the
gestures, we consider several aspects listed below.

Each group was trained with an additional class for background noise, hence 3 gestures actually mean 4 classes,
and so on:

(1) Gestures were selected based on the gathered results of Study 1. The thumb, index, and middle inger are
the least proprioceptive error and are preferred areas for gestural interaction. MCP and DP were also found
to be the least proprioceptive error and preferred spots. Additionally, one of the limitations was the deined
orientation. If the orientation changes, the results will also change. Thus, we include all ingers in our
gesture combination trials.
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(2) We referenced smartwatch user interfaces (SMUI) when narrowing and grouping the gesture selections
[16].

(3) We selected three gestures, including tapping, sliding, and rotation gestures.
(4) As the group size increased, we narrowed the gesture selection to models that had previously performed

well.
(5) We generally avoided placing similar gestures adjacent to each other and at the same location since even a

slight change in sensor placement on the wrist can have a signiicant efect on its performance.
(6) Since we do not calibrate for hand size, we limited the gestures per region to only three to minimize false

positives. All of the gesture set results are illustrated in Figure 13.

The grouping of various gestures enabled gesture interaction to take on a new dimension by distinguishing
between gestures for essential interactions, such as answering/dismissing a phone call, and gestures that require
a great deal of attention, such as increasing the brightness of a smartwatch. We created a gesture group consisting
of 3, 4, 6, 8, and 10 gestures. Additionally, we created a generic gesture combination trial that combines all the
basic gestures regardless of the position of the user’s ingers. We hypothesize generic gesture combination trial
will be a robust model and can be integrated with any situation. The grouping below provides the rationale
behind the grouping as well as its potential application in SMUI. The confusion matrices for all the trials are
attached in the appendix for reference.

3 Gestures (Set 1 to 6). Referring to Table 3, we focused on the three least proprioceptive error ingers, which
are the thumb, index, and middle inger, in that particular order. For the points on each inger, we also focused on
DP for the least proprioceptive error landmark, followed by MCP from user preference. As the DP of the thumb is
the least proprioceptive error landmark, we envision its use for something crucial, such as an emergency button,
and maintain this throughout all the groups. We disregard direction as of this moment, focusing only on vertical
up slide and clockwise rotation. A total of 6 gesture sets were derived from this, where sets 1 to 4 were gestures
between the three ingers, and sets 5 and 6 focused on only the thumb and index ingers. For sets 1 to 4, the
thumb and index were reserved mainly for tap and slide for being overall more preferred, as shown in Table 3.
Therefore, rotation was left mainly on the middle MCP. This overall grouping is suitable for the most basic SMUI
like the Fitbit Alta *, with a single tap for selection, single slide for menu interface, and single rotation to imitate
a one-directional knob.
4 Gestures (Set 7 to 12). For this group, we added the horizontal right slide gesture to the previous group,

making a total of 4 gestures. We chose the right slide as it mimics gestures like "slide-to-unlock". From Table 3,
we chose the gesture only to be performed on CS. It can be seen that set 5 and 6 from the last group, as well as
set 11 and 12 have a dip in accuracy, which leads us to focus on spreading the gestures across diferent ingers
for future groups. This grouping is suitable for basic SMUIs as well, with an additional function to perform a
slide-to-delete or slide-to-unlock.
6 gestures (Set 13 to 18). We skipped the group for 5 gestures because we decided to directly expand the

slide gesture to cover both directions (up and down, as well as left and right). Additionally, we selected the 2 best
results from the previous group (set 7 and 9) and expanded on them. Set 10 was removed because even though it
performed well previously, its gestures have high proprioceptive error compared to 7 (slide was performed on
thumb and tap was performed on the index) and are less accurate compared to 9. Sets 13 and 14 were based on 7
and 9, respectively. Set 15 is a variation of 13, whereas 16 is a variation of 14 by shifting the down vertical slide
to ML of the respective inger. Set 17 is a variation of 15, and 18 is a variation of 16, where the vertical slides
have experimented between the index and thumb since we found from the previous group that variation among

* https://www.itbit.com/gb/shop/altahr
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ingers provides better results. This grouping is suitable for a fully functional SMUI with a knob, which is close to
a watch crown-inspired interface, such as the Digital Crown on Apple Watch *.

7 gestures (Set 19 to 21). For this group, we again chose the best option from the last, namely set 17 (set 18 was
deemed less proprioceptive since the tap gesture was on the index). Additionally, we added the counter-clockwise
rotation gesture for a more sophisticated virtual knob control. Set 19 places both rotations on the middle MCP,
whereas 20 and 21 split them between the thumb, middle, and index. This grouping is suitable for SMUIs with
larger scale knob interface, such as the Samsung GalaxyWatch 4 * with a rotational bezel as a key SMUI navigation
component.
8 gestures (Set 22 to 25). With all the basic gestures and directions added, the next step for us would be

to simply add multiple interaction points of the same gesture type. Since tap was overall preferred, we added
one more tap gesture based on the previous best-performing set, which is set 20. Set 22 and 23 replicates set 20
with the added tap on the index DP and middle DP, respectively. Set 24 is a variation of 21 by shifting the down
vertical slide from the thumb ML to the inger, and set 25 is a variation of 22 that does the same.

10 gestures (Set 26 and 27). Here, we further push the limits of the tapping gesture by doubling it to 4 taps,
hence skipping 9 gestures. Sets 26 and 27 are variations of the previous sets 24 and 25 that performed the best.
Here, we experimented with including the high proprioceptive error landmarks like the pinky and ring inger.
This was for two reasons: 1) we wished to split the tap point according to actual distance to resemble how the
buttons on a watch typically look, such as 2 buttons on each side, or 3 on one side, and 1 on the other, and 2) the
models will perform better in general when the tap locations are physically distinct from our initial testing. The
thumb MCP knob rotation has also been changed to the index MCP to reduce the number of gestures per inger.

Generic gestures (G1 and G2). For this group, we disregard the location of the gestures and simply focus on
generalizing all 7 gestures. For example, tapping on the thumb DP is the same as tapping on the index DP. This
group does not take into account proprioception errors and allows lower accuracy, making it more suitable for
multitasking, such as interaction while driving or cycling. These gesture sets are also independent of hand state,
where participants can perform the gesture when their hands are busy. A similar interface is available in the
navigation mode of smartphone’s music application, which have larger UI components for ease of maneuver
while driving. Additionally, it can be used in everyday smartwatch interaction scenarios and act as a modeless
interface.

6 STUDY 3: REAL-TIME EVALUATION

In this section, we aim to evaluate our model’s performance in real-time using new test datasets with real-world
noise and determine false positives in the real-world scenario. For real-time evaluation, we chose the discrete
gesture set 25, which includes all the eight gesture possibilities, and the generic gesture set �1, which gave
the highest segmented classiication accuracy. The generic gesture set �1 is not location-speciic. Hence, we
hypothesize that in real-time, the gesture inference will have more false positives compared to the discrete gesture
set of 25. This is because there is more chance of free human movements similar to gestures which could produce
false positives under real-time sensing in a real-world scenario.

6.1 Study Design

Besides selecting the discrete and generic gesture set, we further break both models down to with and without
background classiication.

We do this because we believe smartwatches conventionally function in two modes: 1) active interaction, where
the user initiates the input to achieve a desired output, such as tapping a button to access an app intentionally, and

* https://www.apple.com/watch/
* https://www.samsung.com/global/galaxy/galaxy-watch4-classic/
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Fig. 13. Inference results on diferent gesture groups. Inference accuracy is beter when the accuracy value is closer to 1.

2) reactive interaction, where the device initiates interaction and requires the user to react to it, such as replying
to a notiication prompt. Active interactions require background classiication since it is always actively aware of
user input, though this consumes more background computational resources and power. Reactive interaction, on
the other hand, does not require background classiication since it only listens after the prompt. This makes it
less intuitive, yet overall consumes less power and is suitable for better battery life.

6.2 Apparatus

To conduct this study, we developed three systems; a backpack, an on-wrist wearable, and a remote monitoring
system. The backpack is a self-contained gesture inference system using Soli. It equips a laptop computer
(Apple 13-inch MacBook Air), a portable battery, and a dummy external display adapter. The laptop ran a live
gesture inference with a tethered Soli sensor, while the external battery powers the laptop for the stable system
performance of the current prototype. The dummy display adapter is to make the inference system keep running
while the laptop is folded in a backpack. The tethered Soli sensor is on the left wrist as a part of the on-wrist
wearable system.

Alongside the Soli sensor, we adapted an Android smartphone (Google Pixel 4 XL) as a participant’s communi-
cation terminal during the study session. A custom Android application acted as a console for the participant to
log their gestures and report their current activity or issues with the system. The wearable (smartphone and Soli
sensor) was worn on the participant’s left wrist.
The remote monitoring setup gathers all the log data related to the activity of a participant or study status

transmitted from these two systems. The response made by a participant on the on-wrist wearable or gesture
inference status from the backpack will be sent to the C++-based monitoring software that runs on a 15-inch
MacBook Pro laptop via the same Wi-Fi network across all these three devices. This application also allowed the
experimenter to manage the study and data logs. Each of these devices was using the WebSocket protocol to send
data back and forth between systems, and a simple cloud server runs on Amazon Web Services * has been used to
assist the communication. We illustrate the full setup in Figure 14(a). All the apparatus was properly sanitized
before and after each participant.

* https://aws.amazon.com/
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Fig. 14. Real-time study setup for Study 3. (a) Apparatus will sit in a backpack while a participant work on the study except

for the Soli sensor, and a remote monitoring system will help the experimenter conduct the session. (b) shows a participant

performing a gesture in the standing pose, and (c) a participant performing a gesture on the desktop.

6.3 Study Procedure

At the start of the study session, the experimenter introduced the tasks the participant would perform and the
apparatus they would use. After the brieing, the participant was asked to wear an equipped backpack and the
wearable hardware prior to the study session. They could wear a Soli sensor in the same manner in Study 2
and a smartphone with an arm mounting belt. Figure 14(b) shows an example where a participant performs a
gesture with the system setup. The experimenter monitored the system status and the participant’s actions via
the activity logs throughout the session. All sessions were taking one hour approximately.
The participant was asked to perform the gestures while they performed daily activities in an oice space,

including working with a computer on a desk, walking, standing, chatting, or cooking in a small kitchen for
brewing tea or cofee.

The monitoring application was designed to prompt the participant to perform the next gesture automatically
through the console on their left arm for each gesture trial. The timing was notiied by the vibration of the
console and an image shown on the smartphone screen. The participant tapped the image to start a gesture
performance and tapped again to inish it. The participant was asked to report an action they did at the time
from the console after each trial by selecting a pre-deined action or describing the action by using an on-screen
keyboard. Each gesture was repeated three times throughout the study. The order of the gestures performed and
the interval between the gesture trials were randomized from 30 seconds to four minutes for each participant.
The participant was asked to report all incorrect gestures they performed during the gesture prompts and

prior to the gesture prompts in the monitoring app. In addition, when they encountered any trouble or issues
around the study, they reported it to the examiner through the console. An examiner could also respond to the
participant through the monitor software if the participant needs assistance. For each condition, it took one
hour to conduct the whole session. At the end of the study, we compensated the participant with a $10 shopping
voucher.
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6.4 Data Collection and Processing

We recruited 12 participants (6 females, mean: 24.4, SD: 4.0). The criteria for the recruitment of participants were
the same as the studies from the previous sections. We asked participants to remove any rings, wristwatches, and
other hand-worn objects. All the participants had never experienced the RadarHand gestures previously.
As mentioned in the previous section, gesture sensing with Soli performs with a sampling rate of 1000Hz.

In order to reduce the data size for the real-time gesture inference, we applied a sliding window of 32 frames,
similar to what was done in Study 2. As a result, we acquired 30 to 32 frames of data for each second from three
signal receiver channels. A C++-based software program captured the sensor data, and each frame data was
piped to another Python-based inference server program running simultaneously. The Python script infers the
gesture in real-time based on incoming frame-by-frame data with the selected models from Study 2 results. The
program continuously updates the frame history for the last 64 consecutive frames, including the one recently
loaded, and it infers any gesture with the frame history for every two incoming frames based on the gesture
debouncer algorithm discussed in Study 2. We ran the inference for every two frames to make sure the system
ran the inference in real-time without any delay on inference result delivery. Both of the programs were linked
by the ZeroMQ protocol for frame data transporting and inference result reporting.

All the log data was recorded in the CSV ile format, and each line shows each data sent from another device
at a particular time. We recorded the following: 1) timestamp of the recording device, 2) device name (monitor,
inference system, and wearable console), 3) timestamp of the device sending the data, 4) remaining study duration,
5) data owner (system and participant), and 6) any action performed by the participant. The action log contains
detailed information on each gesture trial that a participant performed, an action report from a participant, the
situation of the study, and the network connection status. The Wi-Fi connection between the devices actually
caused some time lag for each data transaction. To overcome this, we collected timestamp information from all
the devices and a "ping" signal, which was continuously sent from the main monitor computer to understand
how much time drift was needed to accurately process the log data. Each data packet exchanged between the
devices came with unique information that was related to a particular device or action. We combined all the data
that we collected from those devices to process as one singular dataset for post-analysis. We also developed a
simple data processing script program with Python to analyze and plot the data for each gesture trial.
For the data processing, we checked the system log ile from the monitor system (observer system), the

inference system (the backpack), and the real-time inference history simultaneously. Firstly, we looked at the
gesture section from the system log and found the corresponding Soli frame number for the beginning and
the ending of the trial. Next, we checked the last 10 ping response times between the monitor system and the
wearable console to check the average duration of the delay taken for message sending. Depending on the delay,
we added an extra 16 frames of data if the delay was less than half a second and an extra 32 frames if it was
more than a half second before the trial section was reported. An extra 32 frames after a trial section was also
considered since each gesture inference required 64 frames of data. After that, we extracted a subsection of the
inference history within a trial section to elicit the gesture performed. We applied the gesture debouncer from
Study 2 to get the gesture performance history out of the last 64 frames.

We applied a model trained on both gesture and background data for active interaction. The model’s inference
was predicted based on the input data from the sensor for the entire duration of the study, including when
the system was prompted to perform a gesture. We used the model that was trained without background class
data to predict reactive interaction. The inference of this model could only be predicted when participants were
prompted to perform the gesture. The gesture with its conidence rate of the inference was documented as a
result for each gesture section.
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6.5 Results and Discussion

As shown in Figure 15, the results from the reactive interaction situations showed clear classiications on all
gestures compared to the active interaction situations. In the following sections, we will discuss the results and
indings from each study condition in more detail.

6.5.1 Active Interaction. The system achieved 87% accuracy as shown in Figure 15(a), with the generic gesture
set (�1 in Figure 13) and 74% as shown in Figure 15(b) with the discrete gesture set (set 25 in Figure 13).
Since the generic gesture set was trained to be more tolerant towards the location of the gestures, it resulted

in overall much fewer false positives and negatives. This may also lead to the gestures being overall more
understandable and easier to master. Among the gestures, generic knob (100.0%), generic slide up (94.4%), and
generic tap (88.9%) performed well.

The main issue with the generic gesture set is that all gestures have an interaction region overlap. For example,
the tap and knob gestures can both be on the index’s MCP. This led to several misclassiications, such as the
generic tap, slide left, and slide right being occasionally recognized as the generic knob. Among all the gestures, it
can be seen that both the generic slide left (77.8%) and slide right (55.6%) performed the poorest. This is possibly
due to the presence of diferent hand states when the participant is performing other tasks. Ideally, they would
need to stop their task before performing the gesture, but we did not enforce this to observe the behavioural
impact on the model performance. The generic slide right gesture overall performed the worst, possibly due to
misrecognizing the initial approach of the right hand towards the left side of the left hand, which can be seen as
a tapping or sliding up gesture at any of the regions around the pinky.

For the discrete gesture set, we found that the majority of the misclassiication is due to the model recognizing
the gesture as background. This is due to various factors like the speed of gesture performance, inger arrival
and departure angle, inger length and hand state, which we did not enforce in this study. The worst performer
was tap on middle DP (53%), followed by slide down on index DP to MCP (61%) and slide right on CS (61%). All
of them tend to be misclassiied as background noise. Slide up on thumb MCP to DP (83%), tap on thumb DP
(72%), and knob counter-clockwise turn on thumb MCP (72%) performed the best possibly due to the thumb being
the least proprioceptive error and that it is physically the furthest inger away. We also noticed that the knob
clockwise gesture on the middle MCP tends to be misclassiied as counter-clockwise being performed on the
thumb. This was actually observed as a mistake performed by 3 participants who performed a counter-clockwise
rotation instead.

6.5.2 Reactive Interaction. The system achieved 91.3% accuracy as shown in Figure 15(c), with the generic gesture
set (�1 in Figure 13) and 81.7% as shown in Figure 15(d) with the discrete gesture set (set 25 in Figure 13). Overall,
the performance of forced interaction models performed well in real-time compared to the voluntary interaction
models.
The reactive interaction generic tap gesture performed accurately (94.6%) compared to the active interaction

generic tap (88.9%). The generic swipe-up (88.9%) and swipe-down (94.4%) have similar movements from the
participant while performing the gesture, which causes misrecognition. Similarly, the generic slide right (83.3%)
and slide left (83.3%) gesture performance was misclassiied due to similar hand movements by the participant
while performing the gesture. The generic knob (94.4%) is misclassiied as a generic tap due to region overlap
between the tap and knob gestures.
For the discrete gesture set, we found that the majority of the misclassiication is due to similar gestures,

irrespective of their position. The worst performer was slide left metacarpals (66.7%) and slide right carpals
(66.7%). Additionally, the swipe-up thumb MCP (76.5%) to DP is classiied as tap thumb DP (93.8%) due to the
region overlap and similar movement before performing the gesture.
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Fig. 15. The confusion matrices for the (a) generic and (b) discrete models for the reactive interaction situations, and (c)

generic and (d) discrete models for the active interaction situations.

7 DESIGN GUIDELINE AND POTENTIAL APPLICATIONS

Overall, RadarHand performed well in our presented context. As discussed previously, unlike competing sensing
methods, radar does not rely on image capture to preserve privacy as an everyday wearable, yet is also able to
capture enough spatial information to accommodate the gestures we propose (close proximity inger interactions),
unlike IMU-based methods. Its only potential trade-of is that achieving this performance requires a large and
diverse dataset, as we detailed in the Study 2 results section. We summarize the key indings from the three
studies into a preliminary design guideline for wearable, radar-based, touch-based, proprioceptive hand gestures:
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(1) Proprioception and gesture response time decrease from the thumb to the pinky inger. This
was tested even under high cognitive load. From the discussion section 4.7 of Study 1, we propose that
emergency functions are kept on the thumb, while the index and middle ingers can be used for device
interaction.

(2) Tapping gestures are most preferred, whereas rotation gestures are least preferred. From the
discussion section 4.7 of Study 1, we suggest tapping on the hand could be used more for intuitive
and immediate action on the smartwatch applications (for example, on/of options or app selection).
Navigating between screens and applications on a smartwatch can be accomplished through sliding
gestures. Additionally, rotational gestures may be used in applications requiring medium to high cognitive
load, such as controlling the screen’s brightness precisely.

(3) Choosing gestures for a discrete gesture set should avoid placing similar gestures near each other

for radar-based smartwatch interaction devices. This allows the model to be more robust against a
slight shift of the device on the wrist, which may cause false positives if similar gestures are nearby. In
addition, the user performing similar gestures nearby may perform in the wrong position. For example,
suppose the gesture set has knob gestures on the index MCP and middle MCP. There is a high chance that
users performing the gesture will get confused about this location in discrete gesture set conditions, which
we have noticed in Study 3 results.

(4) Limit the gestures for each proprioceptive region of the hand. Despite RadarHand being able to
detect up to three types of gestures on a single point, we recommend setting no more than three gestures
per region to minimize false positives since each region has a physically small interaction space as described
in section 5.6.

(5) Design gesture grouping for contextual applications. In section 5.6, we discussed gesture sets from
three to ten gestures and distinguished between discrete and generic gestures. Referring to the gesture
set in Study 2, we propose grouping various gestures into app-speciic gestures or gestures that are only
known to smartwatches. Each set caters to diferent SMUIs, such as basic smartwatches, smartwatches
with knobs, and so on, and can be referred to in section 5.6 for future works.

(6) Collect data for radar-based gesture devices with material ilters to improve their robustness

of prediction in real-time This ilter must have properties similar to device encasing or clothes that
would be covered such as glass, plastics, and cloth [73]. This will enable users to perform gestures even
smartwatch is occluded.

(7) Generic gestures and discrete gestures mainly difer based on the location-speciic design. Both
discrete gestures and generic gestures can be operation eyes-free. However, discrete gestures are suitable for
interfaces that require more selection options, such as multiple buttons and sliders on a mobile operating
system. Generic gestures are more suitable with lower attention and selection requirements with more
oversized, single buttons and sliders, such as answering a call.

(8) For active interaction, generic gesture sets are preferable. For reactive interactions, discrete

gesture sets are preferable. For active interaction, the smartwatch is always-on and expects input from
the user. The model predicting input should be robust and reliable against the user’s everyday movements.
Therefore, the generic gesture set is more suitable for active interaction. Similarly, for reactive interaction,
the smartwatch expects input from the user after its prompt. Therefore the system does not need to classify
background actions. We suggest the discrete gesture set for reactive interactions.

Aside from the SMUIs mentioned above, there are many potential applications for our gesture input technique.
These could include:
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(1) An intuitive desktop input system for GUI navigation. Current desktop systems use a keyboard and
mouse, which relies on shortcuts for professional software like Photoshop*. Touchscreens or touch surfaces
like Apple’s TouchBar* can also be used, but the inger can block the content or is simply not eyes-free. We
envision that our system could provide a more proprioceptive alternative, as shown in Figure 16(1).

(2) Combination with hand tracking for novel interactions. With current extended reality solutions now
ofering hand tracking, we envision RadarHand supplementing the interaction with RadarHand gestures,
as shown in Figure 16(2). This could also be enhanced with haptic feedback by manual hand gestures [53].

(3) Eyes-free vehicle navigation system. It is important always to keep your eyes on the road while driving
or cycling. With RadarHand, performing eyes-free gestures becomes much safer, as shown in Figure 16(3).
Furthermore, a "Drive Mode" could be introduced for the model to switch to a simpler version, such as only
three gesture sets or a generic set.

(4) Proprioceptive interfaces for prosthetic hands.We envision that RadarHand is also usable for users
of prosthetic hands and may even possibly assist in issues like phantom limb pain, as shown in Figure
16(4). By leveraging proprioception, the user may have a better sense of body ownership, thus improving
prosthetic hand postures, although further studies are needed to verify this [61].

(5) Proprioceptive interfaces for gaming. RadarHand gesture input could be used to control games, allowing
players to interact with the game using natural gestures and movements. RadarHand would always be
available and eyes-free input for gaming and entertainment applications.
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Fig. 16. Potential applications of RadarHand: 1) An assistive desktop input system for conventional GUI-based system, 2)

Combination with hand tracking for novel interactions in XR experience, 3) Eyes-free vehicle navigation system, and 4)

Proprioceptive interfaces for prosthetic hands.

Proprioceptive touch-based gestures could be useful in real-life scenarios where the user is focused on a
particular primary task and also need to attend secondary interactions with devices such as smartwatches or
phones. For example, while driving the car, if the driver receives a phone call that they need to respond to, their
concentration shifts slightly from driving the car to responding to the call on their smartphone or smartwatch.

* https://www.adobe.com/products/photoshop.html
* https://support.apple.com/en-au/guide/mac-help/mchlbfd5b039/mac
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It may have catastrophic consequences if attention is diverted in this manner. In such instances, users can use
discrete gestures to attend to or decline calls while minimizing their cognitive load during the interaction, thus
maintaining their attention while driving.

8 LIMITATIONS AND FUTURE WORKS

There are a number of limitations that could be addressed in future work. In Study 1, we only tested gestures on a
speciic body part at a speciic orientation. These two factors can signiicantly afect the Fitts’ law ID since there
will be a drastic change in the user’s motion and proprioceptive sense for diferent body parts and orientations.
We plan to explore other body parts and diferent hand orientations to understand this in the future. In addition,
we used Fitts’ Law to identify or score the best inger tap position to perform gestures in that area. This design
may not apply to all hand gestures. We plan to explore this research gap in the future by proposing an extended
Fitts’ Law to assess proprioception for hand-based gestures.

For Study 2, we collected our data by considering that the participant’s hands were placed on the table every
time. We did not consider diferent hand sizes, shapes, or movements of the dominant hand, which may lead to
poorer results. Hence, we plan to expand this with various hand states and movements. Additionally, we intend to
collect more data combining both background and gesture data from a wide range of participants with a variety
of hand sizes in order to improve our model’s generalizability and robustness.

For Study 3, the current dataset we obtained does not consider the inluence of the gesture performances under
diferent background conditions, hand accessories, and the displacement of the arm wearing a radar sensor. To
improve on this study, our next step is to perform a data collection procedure that is closer to real-world use, such
as while performing daily tasks like holding a bag, walking, and so on. Furthermore, Our study was designed and
conducted on only right-handed participants. In the future, we would like to extend recognising gestures to all
participants using few-short or zero-short learning methods [85]. Finally, we designed our gestures for bi-manual
interaction with limited types of gestures. In the future, we plan to investigate single-handed interaction and
explore diferent hand gestures and hand-to-object interactions with the aid of proprioception.

9 CONCLUSION

We present RadarHand, a wrist-worn radar for detecting proprioceptive touch-based gestures on human skin
landmarks. We irst established the most appropriate proprioceptive points on the back of the left hand for
gestures. In addition, we grouped and classiied the gestures using a deep learning model (with an accuracy of
92% for a generic gesture set and 93% for the best discrete gesture set) and proposed contextual applications for
each gesture group. Furthermore, we conducted an additional real-time evaluation of the model to understand
its performance and shortcomings based on active and reactive interactions. We obtained an accuracy of 87%
and 74% for active generic and discrete gestures, respectively, as well as 91% and 81.7% for reactive generic and
discrete gestures, respectively. Finally, we summarized the indings in a set of design guidelines based on the
gathered results regarding radar as a wrist-worn wearable. Our results indicate that RadarHand has a lot of
potential for future on-skin interfaces.

The data that support the indings of this study are available from the corresponding authors, Ryo Hajika and
Tamil Selvan Gunasekaran, upon reasonable request. The data will contain all RadarHand Dataset, Deep learning
model weights, software, and results from all the studies. Researchers interested in accessing the data can contact
both of the authors to request the data and discuss any necessary terms or restrictions.
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